

DPP – 2 (Alternating Current)

Video Solution on Website:-	https://physicsaholics.com/home/courseDetails/44		
Video Solution on YouTube:-	https://youtu.be/XTXkAJ-AnOM		
Written Solution on Website:-	https://physicsaholics.com/note/notesDetalis/57		
Q 1. An alternating e.m.f between e.m.f. and c capacitance only (a) e.m.f. is ahead of (b) Current is ahead (c) Current lags behi (d) Current is ahead	The same is applied to purely capacitive circuit. The phase relation current flowing in the circuit is or In a circuit containing of current by $\pi/2$ of e.m.f. by $\pi/2$ ind e.m.f. by π of e.m.f. by π		
Q 2. In a circuit containi a.c. voltage by a pha (a) 90° (c) 0°	ng an inductance of zero resistance, the current leads the applied ase angle at (b) 180° (d) None of these		
Q 3. The current in a circ over the applied volt (a) $\tan^{-1}\left(\frac{1}{\omega CR}\right)$ (c) $\tan^{-1}\left(\frac{\omega C}{R}\right)$	tage of frequency $\frac{\omega}{2\pi}$ by. (b) $\tan^{-1}(\omega CR)$ (d) $\cos^{-1}(\omega CR)$		
Q 4. In a series LCR circ supply is 220V and the current lags behi the current leads the (a) 305 W (c) zero	uit R=200(Ω) and the voltage and the frequency of the main 50 Hz respectively. On taking out the capacitance from the circuit and the voltage by 30°. On taking out the inductor from the circuit voltage by 30°. The power dissipated in the LCR circuit is (b) 210 W (d) 242 W		
Q 5. In a series LCR circ 20 V and 40 V respective current in the circuit (a) 30° (c) 60°	puit the voltage across an inductor, capacitor and resistor are 20 V, ectively. The phase difference between the applied voltage and the t is (b) 45° (d) 0°		
Q 6. In an LCR series cir 60V [°] respectively th (a) 60 V	cuit the voltages across R, L and C at resonance are 40V, 60V and the applied voltage is (b) 40 V		

(a) 60 V (b) 40 V(c) 160 V (d) $\sqrt{40^2 + 120^2}$

- Q7. In a series resonant LCR circuit the voltage across R is 100 volts and $R = 1 \text{ k}\Omega$ with C = 2 μ F. The resonant frequency ω is 200 rad/s. At resonance the voltage across L is (a) 2.5×10^{-2} V (b) 40 V (d) 4×10^{-3} V (c) 250 V
- Q 8. In the adjoining figure the impedance of the circuit will be

An e.m.f. $E = 4 \cos(1000t)$ volt is applied to an LR-circuit of inductance 3 mH and Q 9. resistance 4 ohms. The amplitude of current in the circuit is

(a) $\frac{4}{\sqrt{7}}$ A (b) 1.0 A $(c) \frac{4}{7} A$ (d) 0.8 A

- Q 10. In an ac circuit, a resistance of R ohm is connected in series with an inductance L. If phase angle between voltage and current be 45°, the value of inductive reactance will be
 - (a) $\frac{R}{4}$

(a) 120 Ω

(c) 60Ω

(b) $\frac{R}{2}$ (c) R (d) Cannot be found with the given data

- The coefficient of induction of a choice coil is 0.1H and resistance is 12Ω . If it is Q 11. connected to an alternating current source of frequency 60 Hz, then power factor will be

 - (a) 0.56 (b) 0.30(d) 0.74 (c) 0.16
- Q 12. What will be the phase difference between voltage and current, when the current in the circuit is wattless (a) 90° (b) 45°
 - (c) 180° (d) 60°
- Q 13. In the non-resonant circuit, what will be the nature of the circuit for frequencies higher than the resonant frequency
 - (a) Resistive (b) Capacitive
 - (d) None of the above (c) Inductive

Q 14. An LCR circuit contains $R = 50 \Omega$, L = 1 mH and $C = 0.1 \mu F$. The impedance of the circuit will be minimum for a frequency of

(a) $\frac{10^5}{2\pi} s^{-1}$ (c) $2\pi \times 10^5 s^{-1}$ (b) $\frac{10^6}{2\pi} s^{-1}$ (d) $2\pi \times 10^6 s^{-1}$

Q 15. A circuit has a resistance of 11Ω , an inductive reactance of 25Ω and a capacitive resistance of 18Ω . It is connected to an ac source of 260V and 50Hz. The current through the circuit (in amperes) is

(a) 11	(b) 15
(c) 17	(d) 20

Q 16. The voltage across a pure inductor is represented by the following diagram. Which one of the following diagrams will represent the current ?

Answer Key

Q.1 b	Q.2 d	Q.3 a	Q.4 d	Q.5 d
Q.6 b	Q.7 c	Q.8 c	Q.9 d	Q.10 c
Q.11 b	Q.12 a	Q.13 c	Q.14 a	Q.15 d
Q.16 c		R	JAN	NCS
DB	SATT	BB		60
50	ME			