DPP - 2 (Alternating Current)

Video Solution on Website:-

Video Solution on YouTube:-

Written Solution on Website:-
https://physicsaholics.com/home/courseDetails/44

https://youtu.be/XTXkAJ-AnOM

https://physicsaholics.com/note/notesDetalis/57

Q 1. An alternating e.m.f. is applied to purely capacitive circuit. The phase relation between e.m.f. and current flowing in the circuit is or In a circuit containing capacitance only
(a) e.m.f. is ahead of current by $\pi / 2$
(b) Current is ahead of e.m.f. by $\pi / 2$
(c) Current lags behind e.m.f. by π
(d) Current is ahead of e.m.f. by π

Q 2. In a circuit containing an inductance of zero resistance, the current leads the applied a.c. voltage by a phase angle at
(a) 90°
(b) 180°
(c) 0°
(d) None of these

Q 3. The current in a circuit containing a capacitance C and a resistance R in series leads over the applied voltage of frequency $\frac{\omega}{2 \pi}$ by.
(a) $\tan ^{-1}\left(\frac{1}{\omega C R}\right)$
(b) $\tan ^{-1}(\omega C R)$
(c) $\tan ^{-1}\left(\frac{\omega \sigma}{R}\right)$
(d) $\cos ^{-1}(\omega C R)$

Q 4. In a series LCR circuit $R=200(\Omega)$ and the voltage and the frequency of the main supply is 220 V and 50 Hz respectively. On taking out the capacitance from the circuit the current lags behind the voltage by 30°. On taking out the inductor from the circuit the current leads the voltage by 30°. The power dissipated in the LCR circuit is
(a) 305 W
(b) 210 W
(c) zero
(d) 242 W

Q 5. In a series LCR circuit the voltage across an inductor, capacitor and resistor are 20 V , 20 V and 40 V respectively. The phase difference between the applied voltage and the current in the circuit is
(a) 30°
(b) 45°
(c) 60°
(d) 0°

Q 6. In an LCR series circuit the voltages across R, L and C at resonance are $40 \mathrm{~V}, 60 \mathrm{~V}$ and $60 \mathrm{~V}^{`}$ respectively the applied voltage is
(a) 60 V
(b) 40 V
(c) 160 V
(d) $\sqrt{40^{2}+120^{2}}$

Q 7. In a series resonant LCR circuit the voltage across R is 100 volts and $R=1 \mathrm{k} \Omega$ with C $=2 \mu \mathrm{~F}$. The resonant frequency ω is $200 \mathrm{rad} / \mathrm{s}$. At resonance the voltage across L is
(a) $2.5 \times 10^{-2} \mathrm{~V}$
(b) 40 V
(c) 250 V
(d) $4 \times 10^{-3} \mathrm{~V}$

Q 8. In the adjoining figure the impedance of the circuit will be

(a) 120Ω
(b) 50Ω
(c) 60Ω
(d) 90Ω

Q 9. An e.m.f. $\mathrm{E}=4 \cos (1000 \mathrm{t})$ volt is applied to an LR-circuit of inductance 3 mH and resistance 4 ohms. The amplitude of current in the circuit is
(a) $\frac{4}{\sqrt{7}} \mathrm{~A}$
(b) 1.0 A
(c) $\frac{4}{7} \mathrm{~A}$
(d) 0.8 A
Q 10. In an ac circuit, a resistance of R ohm is conneeted in series with an inductance L. If phase angle between voltage and current be 45°, the value of inductive reactance will be
(a) $\frac{R}{4}$
(b) $\frac{R}{2}$
(c) R
(d) Cannot be found with the given data

Q 11. The coefficient of induction of a choke coil is 0.1 H and resistance is 12Ω. If it is connected to an alternating current source of frequency 60 Hz , then power factor will be
(a) 0.56
(b) 0.30
(c) 0.16
(d) 0.74

Q 12. What will be the phase difference between voltage and current, when the current in the circuit is wattless
(a) 90°
(b) 45°
(c) 180°
(d) 60°

Q 13. In the non-resonant circuit, what will be the nature of the circuit for frequencies higher than the resonant frequency
(a) Resistive
(b) Capacitive
(c) Inductive
(d) None of the above

Q 14. An LCR circuit contains $R=50 \Omega, L=1 \mathrm{mH}$ and $\mathrm{C}=0.1 \mu \mathrm{~F}$. The impedance of the circuit will be minimum for a frequency of
(a) $\frac{10^{5}}{2 \pi} s^{-1}$
(b) $\frac{10^{6}}{2 \pi} \mathrm{~s}^{-1}$
(c) $2 \pi \times 10^{5} s^{-1}$
(d) $2 \pi \times 10^{6} s^{-1}$

Q 15. A circuit has a resistance of 11Ω, an inductive reactance of 25Ω and a capacitive resistance of 18Ω. It is connected to an ac source of 260 V and 50 Hz . The current through the circuit (in amperes) is
(a) 11
(b) 15
(c) 17
(d) 20

Q 16. The voltage across a pure inductor is represented by the following diagram. Which one of the following diagrams will represent the current?

(a)

(b)

(c)

(d) none of these

Answer Key

